Jordi Heijman

Associate professor

Dr Jordi Heijman studied Knowledge Engineering and obtained his PhD cum laude (a distinction awarded to only 5% of PhDs in the Netherlands) in April 2012, for his work on a joint project between the Dept. of Cardiology and the Dept. of Data Science and Knowledge Engineering at Maastricht University. As part of his PhD, he spent 1.5 years at the renowned Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, USA under the supervision of Prof. Yoram Rudy. After completing his PhD, he worked as a postdoctoral fellow at the Medical Faculty Mannheim, Heidelberg University, and the Institute of Pharmacology, University Duisburg-Essen with Prof. Dobromir Dobrev. In April 2015, he was recruited back to Maastricht University to strengthen the translational axis between CARIM and the Maastricht UMC+ Heart+Vascular Center for their strategic focus area ‘cardiac arrhythmias’. He is currently working as an associate professor at the Department of Cardiology.

Jordi’s research combines experimental and computational methods to investigate the mechanisms of cardiac arrhythmias. His work is funded by prestigious grants (NWO Veni 2015, Dutch Heart Foundation/CVON Predict Young Talent Program 2017, NWO Vidi 2020). He has published >100 peer-reviewed articles, the majority as (shared-)first author, many in high-impact journals such as Circulation (3x), Circulation Research (8x), The European Heart Journal (1x), Nature Reviews in Cardiology (1x) and Science Translational Medicine (1x). These articles have been cited >3500 times, and emphasize the need for interdisciplinary research to advance the diagnosis and treatment of cardiac arrhythmias. His expertise is recognized as invited speaker for numerous international conferences, including the EHRA, ESC, AHA, ISHR and HRS meetings, and as referee for scientific journals and grant applications.

Furthermore, he serves on various committees, including the Strategic Board of CARIM, and as chair-elect of the ESC Working Group on Cardiac Cellular Electrophysiology. He is an associate editor for International Journal of Cardiology: Heart & Vasculature and in 2018 was Co-Chair of the 45thComputing in Cardiology conference. His work has received attention from several general media in response to a nomination for the popular science magazine NewScientist’s top 25 of young scientific talent 2016.

Department of Cardiology
P. Debyelaan 25, 6229 HX Maastricht 
PO Box 5800, 6202 AZ Maastricht

  • 2024
    • Buonocunto, M., Lyon, A., Delhaas, T., Heijman, J., & Lumens, J. (2024). Electrophysiological effects of stretch-activated ion channels: a systematic computational characterization. The Journal of Physiology, 602(18), 4585-4604. https://doi.org/10.1113/JP284439
    • Bodi, I., Mettke, L., Michaelides, K., Hornyik, T., Meier, S., Nimani, S., Perez-Feliz, S., El-Battrawy, I., Bugger, H., Zehender, M., Brunner, M., Heijman, J., & Odening, K. E. (2024). Beneficial normalization of cardiac repolarization by carnitine in transgenic short QT syndrome type 1 rabbit models. Cardiovascular Research, 120(13), 1550-1561. https://doi.org/10.1093/cvr/cvae149
    • Fakuade, F. E., Hubricht, D., Möller, V., Sobitov, I., Liutkute, A., Döring, Y., Seibertz, F., Gerloff, M., Pronto, J. R. D., Haghighi, F., Brandenburg, S., Alhussini, K., Ignatyeva, N., Bonhoff, Y., Kestel, S., El-Essawi, A., Jebran, A. F., Großmann, M., Danner, B. C., ... Voigt, N. (2024). Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation. Circulation, 150(7), 544-559. https://doi.org/10.1161/CIRCULATIONAHA.123.066577
    • Trayanova, N. A., Lyon, A., Shade, J., & Heijman, J. (2024). Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiological Reviews, 104(3), 1265-1333. https://doi.org/10.1152/physrev.00017.2023
    • Heijman, J., & Dobrev, D. (2024). Spexin Hormone Signaling and Atrial Fibrillation: The Knowns and Unknowns. Circulation, 150(2), 128-131. https://doi.org/10.1161/CIRCULATIONAHA.124.070016
    • Niskala, A., Heijman, J., Dobrev, D., Jespersen, T., & Saljic, A. (2024). Targeting the NLRP3 inflammasome signalling for the management of atrial fibrillation. British Journal of Pharmacology. Advance online publication. https://doi.org/10.1111/bph.16470
    • Cluitmans, M. J. M., Plank, G., & Heijman, J. (2024). Digital twins for cardiac electrophysiology: state of the art and future challenges. Herzschrittmachertherapie und Elektrophysiologie, 35(2), 118-123. https://doi.org/10.1007/s00399-024-01014-0
    • Steffens, S., Schröder, K., Krüger, M., Maack, C., Streckfuss-Bömeke, K., Backs, J., Backofen, R., Baeßler, B., Devaux, Y., Gilsbach, R., Heijman, J., Knaus, J., Kramann, R., Linz, D., Lister, A. L., Maatz, H., Maegdefessel, L., Mayr, M., Meder, B., ... Kohl, P. (2024). The challenges of research data management in cardiovascular science: a DGK and DZHK position paper-executive summary. Clinical research in cardiology, 113(5), 672-679. https://doi.org/10.1007/s00392-023-02303-3
    • Heijman, J., & Madreiter-Sokolowski, C. T. (2024). Is ageing a modifiable risk factor for atrial fibrillation?Cardiovascular Research, 120(5), 440-442. https://doi.org/10.1093/cvr/cvae040
    • Saljic, A., & Heijman, J. (2024). P2X7 receptors: central drivers of the neuro-cardiac link between atrial fibrillation and depression?EP Europace, 26(2), Article euae023. https://doi.org/10.1093/europace/euae023
  • 2023
    • Herrera, N. T., Zhang, X., Ni, H., Maleckar, M. M., Heijman, J., Dobrev, D., Grandi, E., & Morotti, S. (2023). Dual effects of the small-conductance Ca2+-activated K+ current on human atrial electrophysiology and Ca2+-driven arrhythmogenesis: an in silico study. American Journal of Physiology-heart and Circulatory Physiology, 325(4), H896-H908. https://doi.org/10.1152/ajpheart.00362.2023
    • Remme, C. A., Heijman, J., Gomez, A. M., Zaza, A., & Odening, K. E. (2023). 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. EP Europace, 25(8), 1-11. Article euad210. https://doi.org/10.1093/europace/euad210
    • Heijman, J., & Christ, T. (2023). Mind the gap: Leak currents and induced pluripotent stem cell-derived cardiomyocytes in translational cardiac electrophysiology. EP Europace, 25(9), Article euad236. https://doi.org/10.1093/europace/euad236
    • Saljic, A., Heijman, J., & Dobrev, D. (2023). Recent Advances in Antiarrhythmic Drug Therapy. Drugs, 83(13), 1147 - 1160. https://doi.org/10.1007/s40265-023-01923-3
    • Heijman, J., & Dobrev, D. (2023). Determinants and therapeutic potential of calcium handling abnormalities in atrial fibrillation: What can we learn from computer models?The Journal of Physiology, 601(13), 2545-2546. https://doi.org/10.1113/jp283817
    • Meier, S., Grundland, A., Dobrev, D., Volders, P. G. A., & Heijman, J. (2023). In silico analysis of the dynamic regulation of cardiac electrophysiology by K(v)11.1 ion-channel trafficking. The Journal of Physiology, 601(13), 2711-2731. https://doi.org/10.1113/JP283976
    • Wang, X., Song, J., Yuan, Y., Li, L., Abu-Taha, I., Heijman, J., Sun, L., Dobrev, S., Kamler, M., Xie, L., Wehrens, X. H. T., Horrigan, F. T., Dobrev, D., & Li, N. (2023). Downregulation of FKBP5 Promotes Atrial Arrhythmogenesis. Circulation Research, 133(1), E1-E16. https://doi.org/10.1161/CIRCRESAHA.122.322213
    • Heijman, J., Zhou, X., Morotti, S., Molina, C. E., Abu-Taha, I. H., Tekook, M., Jespersen, T., Zhang, Y., Dobrev, S., Milting, H., Gummert, J., Karck, M., Kamler, M., El-Armouche, A., Saljic, A., Grandi, E., Nattel, S., & Dobrev, D. (2023). Enhanced Ca2+-Dependent SK-Channel Gating and Membrane Trafficking in Human Atrial Fibrillation. Circulation Research, 132(9), E116-E133. https://doi.org/10.1161/CIRCRESAHA.122.321858
    • Cluitmans, M. J. M., Bayer, J., Bear, L. R., Ter Bekke, R. M. A., Heijman, J., Coronel, R., & Volders, P. G. A. (2023). The circle of reentry: Characteristics of trigger-substrate interaction leading to sudden cardiac arrest. Frontiers in Cardiovascular Medicine, 10, Article 1121517. https://doi.org/10.3389/fcvm.2023.1121517
    • Seibertz, F., Sutanto, H., Dulk, R., Pronto, J. R. D., Springer, R., Rapedius, M., Liutkute, A., Ritter, M., Jung, P. L., Stelzer, L., Husgen, L. M., Klopp, M., Rubio, T., Fakuade, F. E., Mason, F. E., Hartmann, N., Pabel, S., Streckfuss-Bomeke, K., Cyganek, L., ... Voigt, N. (2023). Electrophysiological and calcium-handling development during long-term culture of human-induced pluripotent stem cell-derived cardiomyocytes. Basic Research in Cardiology, 118(1), Article 14. https://doi.org/10.1007/s00395-022-00973-0
    • Gawalko, M., Saljic, A., Li, N., Abu-Taha, I., Jespersen, T., Linz, D., Nattel, S., Heijman, J., Fender, A., & Dobrev, D. (2023). Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovascular Research, 119(3), 614-630. https://doi.org/10.1093/cvr/cvac093
    • Dobrev, D., Heijman, J., Hiram, R., Li, N., & Nattel, S. (2023). Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nature Reviews Cardiology, 20(3), 145-167. https://doi.org/10.1038/s41569-022-00759-w
    • Cachorro, E., Guenscht, M., Schubert, M., Sadek, M. S., Siegert, J., Dutt, F., Bauermeister, C., Quickert, S., Berning, H., Nowakowski, F., Laemmle, S., Firneburg, R., Luo, X. J., Kunzel, S. R., Klapproth, E., Mirtschink, P., Mayr, M., Dewenter, M., Vettel, C., ... Kammerer, S. (2023). CNP Promotes Antiarrhythmic Effects via Phosphodiesterase 2. Circulation Research, 132(4), 400-414. https://doi.org/10.1161/CIRCRESAHA.122.322031
  • 2022
    • Xenakis, M. N., Kapetis, D., Yang, Y., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Smeets, H. J., Lindsey, P. J., & Westra, R. L. (2022). Correction to: Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel's pore: a modeling study. Journal of Biological Physics, 48(4), 477-478. https://doi.org/10.1007/s10867-022-09616-w
    • Scheurlen, C., van den Bruck, J.-H., Filipovic, K., Wörmann, J., Arica, Z., Erlhöfer, S., Dittrich, S., Heijman, J., Lüker, J., Steven, D., & Sultan, A. (2022). Procedural and outcome impact of obesity in cryoballoon versus radiofrequency pulmonary vein isolation in atrial fibrillation patients. Journal of Interventional Cardiac Electrophysiology, 65(2), 403-410. https://doi.org/10.1007/s10840-022-01210-3
    • Heijman, J., & Dobrev, D. (2022). Molecular determinants and therapeutic potential of focal ectopic activity: more than meets the Iti. European Heart Journal, 43(40), 4208-4210. https://doi.org/10.1093/eurheartj/ehac357
    • Cai, M., Schotten, U., Dobrev, D., & Heijman, J. (2022). Atrial fibrillation substrate development before, during and after cardiac surgery: Who is to blame for late post-operative atrial fibrillation?International Journal of Cardiology, 365, 44-46. https://doi.org/10.1016/j.ijcard.2022.07.027
    • Meier, S., & Heijman, J. (2022). Commentary: EP-PINNs: Cardiac electrophysiology characterisation using physics-informed neural networks. Frontiers in Cardiovascular Medicine, 9, Article 1003652. https://doi.org/10.3389/fcvm.2022.1003652
    • Cunha, P. S., Laranjo, S., Heijman, J., & Oliveira, M. M. (2022). The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in Cardiovascular Medicine, 9, Article 879984. https://doi.org/10.3389/fcvm.2022.879984
    • Wiedmann, F., Beyersdorf, C., Zhou, X.-B., Kraft, M., Paasche, A., Jávorszky, N., Rinné, S., Sutanto, H., Büscher, A., Foerster, K. I., Blank, A., El-Battrawy, I., Li, X., Lang, S., Tochtermann, U., Kremer, J., Arif, R., Karck, M., Decher, N., ... Schmidt, C. (2022). Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovascular Research, 118(7), 1728-1741. https://doi.org/10.1093/cvr/cvab177
    • Saljic, A., Heijman, J., & Dobrev, D. (2022). Emerging Antiarrhythmic Drugs for Atrial Fibrillation. International Journal of Molecular Sciences, 23(8), Article 4096. https://doi.org/10.3390/ijms23084096
    • Sutanto, H., & Heijman, J. (2022). Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells, 11(7), Article 1090. https://doi.org/10.3390/cells11071090
    • Colman, M. A., Alvarez-Lacalle, E., Echebarria, B., Sato, D., Sutanto, H., & Heijman, J. (2022). Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Frontiers in physiology, 13, Article 836622. https://doi.org/10.3389/fphys.2022.836622
  • 2021
    • Ravens, U., Gomez, A. M., Heijman, J., Remme, C. A., Dobrev, D., Smith, G., Volders, P. G. A., Cerbai, E., Eisner, D. A., Casadei, B., Zaza, A., Richard, S., Mugelli, A., Vassort, G., Brown, H. F., & Sipido, K. R. (2021). Edward Carmeliet (1930-2021)-channelling scientific curiosity: a tribute from the ESC Working Group on Cardiac Cellular Electrophysiology†. Cardiovascular Research, 117(14), e171-e173. https://doi.org/10.1093/cvr/cvab333
    • Heijman, J., Rahm, A.-K., & Dobrev, D. (2021). Stretching the limits of antiarrhythmic drug therapy: The promise of small-conductance calcium-activated potassium channel blockers. IJC Heart and Vasculature, 37, Article 100924. https://doi.org/10.1016/j.ijcha.2021.100924
    • Cluitmans, M. J. M., Bear, L. R., Nguyên, U. C., van Rees, B., Stoks, J., Ter Bekke, R. M. A., Mihl, C., Heijman, J., Lau, K. D., Vigmond, E., Bayer, J., Belterman, C. N. W., Abell, E., Labrousse, L., Rogier, J., Bernus, O., Haïssaguerre, M., Hassink, R. J., Dubois, R., ... Volders, P. G. A. (2021). Noninvasive detection of spatiotemporal activation-repolarization interactions that prime idiopathic ventricular fibrillation. Science Translational Medicine, 13(620), Article eabi9317. https://doi.org/10.1126/scitranslmed.abi9317
    • Odening, K. E., Gomez, A. M., Dobrev, D., Fabritz, L., Heinzel, F. R., Mangoni, M. E., Molina, C. E., Sacconi, L., Smith, G., Stengl, M., Thomas, D., Zaza, A., Remme, C. A., & Heijman, J. (2021). ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. EP Europace, 23(11), 1795-1814. https://doi.org/10.1093/europace/euab142
    • Lyon, A., van Mourik, M., Cruts, L., Heijman, J., Bekkers, S. C. A. M., Schotten, U., Crijns, H. J. G. M., Linz, D., & Lumens, J. (2021). Understanding the effects of heart beat irregularity on ventricular function in human atrial fibrillation: simulation models may help to untie the knot-Authors' reply. EP Europace, 23(11), 1869-1869. https://doi.org/10.1093/europace/euab144
    • Lyon, A., van Opbergen, C. J. M., Delmar, M., Heijman, J., & van Veen, T. A. B. (2021). In silico Identification of Disrupted Myocardial Calcium Homeostasis as Proarrhythmic Trigger in Arrhythmogenic Cardiomyopathy. Frontiers in physiology, 12, Article 732573. https://doi.org/10.3389/fphys.2021.732573
    • Sutanto, H., Dobrev, D., & Heijman, J. (2021). Angiotensin Receptor-Neprilysin Inhibitor (ARNI) and Cardiac Arrhythmias. International journal of molecular sciences, 22(16), Article 8994. https://doi.org/10.3390/ijms22168994
    • Nedios, S., Lindemann, F., Heijman, J., Crijns, H. J. G. M., Bollmann, A., & Hindricks, G. (2021). Atrial remodeling and atrial fibrillation recurrence after catheter ablation: Past, present, and future developments. Herz, 46(4), 312-317. https://doi.org/10.1007/s00059-021-05050-1
    • Sultan, A., Wormann, J., Luker, J., van der Bruck, J. H., Plenge, T., Rudolph, V., Klinke, A., Heijman, J., Mollenhauer, M., Ravekes, T., Baldus, S., & Steven, D. (2021). Significance of myeloperoxidase plasma levels as a predictor for cardiac resynchronization therapy response. Clinical research in cardiology, 110(8), 1173-1180. https://doi.org/10.1007/s00392-020-01690-1
    • Heijman, J., Sutanto, H., Crijns, H. J. G. M., Nattel, S., & Trayanova, N. A. (2021). Computational models of atrial fibrillation: achievements, challenges and perspectives for improving clinical care. Cardiovascular Research, 117(7), 1682-1699. https://doi.org/10.1093/cvr/cvab138
    • Nattel, S., Sager, P. T., Huser, J., Heijman, J., & Dobrev, D. (2021). Why translation from basic discoveries to clinical applications is so difficult for atrial fibrillation and possible approaches to improving it. Cardiovascular Research, 117(7), 1616-1631. https://doi.org/10.1093/cvr/cvab093
    • Wagner, M., Sadek, M. S., Dybkova, N., Mason, F. E., Klehr, J., Firneburg, R., Cachorro, E., Richter, K., Klapproth, E., Kuenzel, S. R., Lorenz, K., Heijman, J., Dobrev, D., El-Armouche, A., Sossalla, S., & Kaemmerer, S. (2021). Cellular Mechanisms of the Anti-Arrhythmic Effect of Cardiac PDE2 Overexpression. International journal of molecular sciences, 22(9), Article 4816. https://doi.org/10.3390/ijms22094816
    • Aguilar, M., Heijman, J., Dobrev, D., & Nattel, S. (2021). One Ring to Rule Them All: Continuous Monitoring of Patients With Secondary Atrial Fibrillation Points to a Unifying Underlying Mechanism. Canadian Journal of Cardiology, 37(5), 686-689. https://doi.org/10.1016/j.cjca.2021.01.018
    • Xenakis, M. N., Kapetis, D., Yang, Y., Gerrits, M. M., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Westra, R. L., Lindsey, P. J., & Smeets, H. J. (2021). Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics, 22(1), Article 212. https://doi.org/10.1186/s12859-021-04119-2
    • Vagos, M. R., Arevalo, H., Heijman, J., Schotten, U., & Sundnes, J. (2021). A Computational Study of the Effects of Tachycardia-Induced Remodeling on Calcium Wave Propagation in Rabbit Atrial Myocytes. Frontiers in physiology, 12, Article 651428. https://doi.org/10.3389/fphys.2021.651428
    • Heijman, J., Vernooy, K., & C van Gelder, I. (2021). The road goes ever on: innovations and paradigm shifts in atrial fibrillation management. EP Europace, 23, II1-II3. https://doi.org/10.1093/europace/euab061